Artificial Intelligence and machine learning. Challenges and opportunities for mathematicians

Pierluigi Contucci

University of Bologna

pierluigi.contucci@unibo.it

A perspective on Artificial Intelligence in Industry and Research, CAE Conference

October 29th, 2019

 Ω

Overview

[Introduction](#page-1-0)

- [The AI realm, machine learning and deep learning](#page-1-0)
- [Why mathematical \(and physical!\) approaches](#page-1-0)
- [An inverse problem in a complex landscape](#page-1-0)
- [Statistical Physics perspective](#page-1-0)

2 [The model: Deep Boltzmann Machines](#page-1-0)

- **o** [Definitions](#page-1-0)
- [Mathematical quantities](#page-1-0) \bullet
- [Theorems: annealing and replica symmetry](#page-1-0)
- **[Architectural constraints](#page-1-0)**

[What's next?](#page-1-0) \bullet [...](#page-1-0) 0 [...](#page-1-0)

- 30

 Ω

 $\mathcal{A} \cap \mathcal{B} \rightarrow \mathcal{A} \ni \mathcal{B} \rightarrow \mathcal{A} \ni \mathcal{B} \rightarrow \mathcal{B}$

Machine learning, classical AI (Symbolic)

• High dimensional problems (low dimensional)

• Deep architectures in machine learning

 \equiv Ω

イロト イ押ト イヨト イヨト

Introduction

hidden layer 1 hidden layer 2

D.

 299

イロト イ部 トメ ヨ トメ ヨト

Introduction

- Deep supervised learning: statistical mechanics inverse problem with assigned boundary conditions
- Euristically: non convex problem, very large (high entropy!) local minima
- Use a class of tractable models (Boltzmann Machines) and aim at their exact solutions

イロト イ押ト イヨト イヨト

 Ω

• Investigate their architectural constraints

 \bullet ...

We consider a statistical mechanics model composed by

- \bullet N binary Ising spins
- arranged over K layers L_1, \ldots, L_K of sizes N_1, \ldots, N_K respectively with $\sum_{\mathit{p}=1}^{\mathit{K}}$ $\mathit{N_p}=\mathit{N}$
- spins in the layer L_p interact with all those in the layer L_{p-1} , L_{p+1} and only with them
- the weights connecting layers L_p and L_{p+1} are $N_p \times N_{p+1}$ real valued i.i.d. random couplings sampled from a standard Gaussian distribution

KED KAP KED KED E VOOR

Definition of the DBM

spin variable while all the interactions are drawn among spins in adjacent Schematic representation of a DBM with K layers. Each circle represents a layers (but there are no intra-layer interactions)

 Ω

イロメ イ母メ イヨメ イヨ

Themodynamic limit and form factors

We will focus on the properties of the DBM in the thermodynamic limit, namely when $N \to \infty$ so

- we denote by $\Lambda_N \equiv (N_1, \ldots, N_K)$ and we assume for every $p = 1, \ldots, K$ that the relative sizes $\frac{N_{p}}{N}$, that we refer to as *form factors*, of the layers converge in the large volume limit:

$$
\lambda_{\rho}^{(N)} \equiv \frac{N_{\rho}}{N} \xrightarrow[N \to \infty]{} \lambda_{\rho} \in [0,1]
$$

- we denote by $\lambda=(\lambda_1,\ldots,\lambda_K)$ the relative sizes in the large volume limit. Notice that $\sum_{p=1}^K \lambda_p = 1$

KOD KARD KED KED E VAN

Hamiltonian of the DBM

Definition

The random Hamiltonian (or cost function to keep a machine learning jargon), of a DBM is

$$
H_{\Lambda_N}(\sigma) = -\frac{\sqrt{2}}{\sqrt{N}} \sum_{p=1}^{K-1} \sum_{(i,j)\in L_p\times L_{p+1}} J_{ij}^{(p)} \sigma_i \sigma_j
$$

where $J_{ij}^{(\rho)}$, $(i,j)\in L_{\rho}\times L_{\rho+1}$, $\rho=1,\ldots,K-1$ is a family of i.i.d. standard Gaussian random variables

Remark: one can also consider (random) external fields

イロト イ母 トイミト イミト ニヨー りんぴ

Overlap and covariance

Notice that $H_{\mathsf{\Lambda}_N}$ is a gaussian process on $\{\pm 1\}^N$ with covariance

$$
\mathbb{E} H_{\Lambda_N}(\sigma) H_{\Lambda_N}(\tau) = 2 N \sum_{p=1}^{K-1} \lambda_p^{(N)} \lambda_{p+1}^{(N)} q_{L_p}(\sigma, \tau) q_{L_{p+1}}(\sigma, \tau)
$$

where

Definition

Given two spin configurations $\sigma,\tau\in\{\pm1\}^{\textstyle\mathcal{N}}$, for every $\boldsymbol{\mathcal{p}}=1,\ldots,K$ we define the overlap over the layer L_p as

$$
q_{L_p}(\sigma,\tau) = \frac{1}{N_p} \sum_{i \in L_p} \sigma_i \, \tau_i \, \in [-1,1] \ .
$$

 Ω

Partition function and thermodynamic pressure of a DBM

Definition

Given $\beta > 0$, the random partition function is

$$
Z_{\Lambda_N}(\beta) = \sum_{\sigma \in \{-1,1\}^N} e^{-\beta H_{\Lambda_N}(\sigma)}.
$$

 OQ

We call random pressure density the quantity $\displaystyle{\frac{1}{N}}$ log $Z_{\Lambda_N}(\beta)$

Main question: properties of $\frac{1}{N}\,\log Z_{\Lambda_N}(\beta)$ as $N\to\infty$

First key property: self averaging

$$
\lim_{N\to\infty}\frac{1}{N}\,\log Z_{\Lambda_N}(\beta)\,=\,\lim_{N\to\infty}p_{\Lambda_N}^{DBM}(\beta)\ \, a.s.
$$

where

$$
p_{\Lambda_N}^{DBM}(\beta) \equiv \frac{1}{N} \mathbb{E} \log Z_{\Lambda_N}(\beta)
$$

イロト イ押ト イヨト イヨト

= ೨೦೦

is called quenched pressure.

Main idea

The main idea is to construct an interpolation between a DBM with K layers and K independent Sherringhton-Kirkpatrick models

Given $a=(a_p)_{1\leq p\leq K-1}\in(0,\infty)^{K-1}$, for every $p=1,\ldots,K$ we consider an SK model of size N_ρ at inverse temperature $\beta \, \sqrt{\lambda_\rho^{(N)} \, \theta_p(a)}$, where we set

$$
\begin{cases}\n\theta_1(a) \equiv a_1 \\
\theta_p(a) \equiv \frac{1}{a_{p-1}} + a_p & \text{if } p = 2, \dots, K-1 \\
\theta_K(a) \equiv \frac{1}{a_{K-1}}\n\end{cases}
$$

 Ω

.

イロメ イ何 メイヨメ イヨメーヨー

Main result

Theorem

The quenched pressure of the DBM satisfies the following lower bound

$$
p_{\Lambda_N}^{DBM}(\beta) \geq \sum_{p=1}^K \lambda_p^{(N)} p_{N_p}^{SK} \left(\beta \sqrt{\lambda_p^{(N)} \theta_p(a)}\right) - \frac{\beta^2}{2} \sum_{p=1}^K (\lambda_p^{(N)})^2 \theta_p(a) +
$$

+ $\beta^2 \sum_{p=1}^{K-1} \lambda_p^{(N)} \lambda_{p+1}^{(N)}$

→ 何 ▶ → ヨ ▶ → ヨ ▶

4 D F

 \equiv

 QQ

for any choice of $a=(a_p)_{1\leq p\leq K-1}\in(0,\infty)^{K-1}$

Main result

Corollary

$$
\liminf_{N \to \infty} p_{\Lambda_N}^{DBM}(\beta) \ge
$$
\n
$$
\sup_{a \in (0,\infty)^{K-1}} \left\{ \sum_{p=1}^{K} \lambda_p p^{SK} \left(\beta \sqrt{\lambda_p \theta_p(a)} \right) - \frac{\beta^2}{2} \sum_{p=1}^{K} \lambda_p^2 \theta_p(a) \right\} + \n+ \beta^2 \sum_{p=1}^{K-1} \lambda_p \lambda_{p+1}.
$$

イロト イ部 トイヨ トイヨト

 \equiv 990

The annealed regime

Under what conditions the model is in the annealed state? Annealed means structurally convex

Consider a DBM with $K = 2, 3, 4$ layers and define

$$
A_K = \{(\beta,\lambda): 4\beta^4 \leq \phi_K(\lambda)\},
$$

where we set

$$
\begin{aligned}\n\phi_2(\lambda) &\equiv \frac{1}{\lambda_1 \lambda_2} \\
\phi_3(\lambda) &\equiv \frac{1}{\lambda_1 \lambda_2 + \lambda_2 \lambda_3} \\
\phi_4(\lambda) &\equiv \min\{t > 0 : 1 - t(\lambda_1 \lambda_2 + \lambda_2 \lambda_3 + \lambda_3 \lambda_4) + t^2 \lambda_1 \lambda_2 \lambda_3 \lambda_4 = 0\} \,.\n\end{aligned}
$$

 \equiv 990

イロト イ押ト イヨト イヨト

The annealed regime

Theorem

If $(\beta, \lambda) \in A_K$ then there exists

$$
\lim_{N\to\infty} p_{\Lambda_N}^{DBM}(\beta) = \lim_{N\to\infty} \frac{1}{N} \log \mathbb{E} Z_{\Lambda_N}(\beta) = \log 2 + \beta^2 \sum_{p=1}^{K-1} \lambda_p \lambda_{p+1}.
$$

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

 OQ 高

Pierluigi Contucci (Alma Mater Studiorum) and Contuction Control of Control of the Cont

The annealed regime

Some observation on the previous condition. What can we do to squeeze the annealed reagime as much as possible?

 $\theta \in \beta \leq 1$ the DBM is in the annealed regime for any choice of λ .

• the infimum of $\phi_K(\lambda)$ is reached for

$$
\begin{cases}\n\lambda_1 = \lambda_2 = \frac{1}{2} & \text{if } K = 2 \\
\lambda_2 = \frac{1}{2}, \lambda_1 + \lambda_3 = \frac{1}{2} & \text{if } K = 3 \\
(\lambda_4 = 0, \lambda_2 = \frac{1}{2}, \lambda_1 + \lambda_3 = \frac{1}{2}) & \text{or} \\
(\lambda_1 = 0, \lambda_3 = \frac{1}{2}, \lambda_2 + \lambda_4 = \frac{1}{2}) & \text{if } K = 4\n\end{cases}
$$

 Ω

イロト イ何 トイヨト イヨト ニヨー

.

A replica symmetric approximation

We say that the model is replica symmetric if the overlap is self averaging; what is the replica symmetric solution of a DBM model? This is important because in DL we know that the algorithms obtaining good classification performances are of RS type: belief propagation etc, and the local minima are wide, large entropy states.

The quenched pressure density of the model is now

$$
p_{\Lambda_N}^{DBM}(\beta,h) \equiv \frac{1}{N} \mathbb{E} \log \sum_{\sigma} \exp \left(-\beta H_{\Lambda_N}(\sigma) + \sum_{p=1}^K \sum_{i \in L_p} h_i^{(p)} \sigma_i \right)
$$

 Ω

イロメ イ何 メイヨメ イヨメーヨ

The replica symmetric approximation

Definition

Given $y=(y_p)_{p=1,...,K}\in[0,\infty)^K$ the *replica symmetric functional* is defined as

$$
\mathcal{P}_{\Lambda_N}^{RS}(y,\beta,h) \equiv \sum_{p=1}^K \lambda_p^{(N)} \mathbb{E}_{z,h} \log \cosh \left(\beta \sqrt{2} q_p(\lambda, y) z + h^{(p)} \right)
$$

$$
+ \beta^2 \sum_{p=1}^{K-1} \lambda_p^{(N)} \lambda_{p+1}^{(N)} (1 - y_p) (1 - y_{p+1}) + \log 2
$$

where
$$
q_p(\lambda, y) = \sqrt{\lambda_{p-1}^{(N)} y_{p-1} + \lambda_{p+1}^{(N)} y_{p+1}}
$$
 and
z is a standard Gaussian random variable independent of $h^{(1)}, \ldots, h^{(p)}$.

画

 QQ

イロト イ押ト イヨト イヨト

The replica symmetric approximation

The previous definition is motivated by the following sum rule:

$$
p_{\Lambda_N}^{DBM}(\beta,h) = \mathcal{P}_{\Lambda_N}^{RS}(y,\beta,h) - \beta^2 \int_0^1 \left\langle R_N \right\rangle_{N,t} dt,
$$

where $\langle \cdot \rangle_{N,t}$ denotes the quenched Gibbs expectation associated to a suitable interpolating Hamiltonian and for every $\sigma,\tau\in\{\pm 1\}^{\textsf{N}}$

$$
R_N(\sigma,\tau) \, \equiv \, \sum_{p=1}^{K-1} \lambda_p^{(N)} \lambda_{p+1}^{(N)} \, \left(q_{L_p}(\sigma,\tau) - y_p \right) \left(q_{L_{p+1}}(\sigma,\tau) - y_{p+1} \right) \, .
$$

イロト イ押ト イヨト イヨト

 Ω

Stability condition for annealing

Stationary points of $\mathcal{P}_{\Lambda_N}^{RS}(y,\beta,h)$ satisfy the following system of self-consistent equations:

$$
y_p = \mathbb{E}_z \tanh^2 \left(\beta \sqrt{2} \sqrt{\lambda_{p-1} y_{p-1} + \lambda_{p+1} y_{p+1}} z + h_p \right) \qquad \forall \ p = 1, \ldots, K.
$$

Now if we assume zero external field then $y = 0$ is a solution. Moreover

$$
\mathcal{P}^{RS}(y = 0, \beta, h = 0, \lambda) = \log 2 + \beta^2 \sum_{p=1}^{K-1} \lambda_p \lambda_{p+1}.
$$

イロト イ母 トイミト イミト ニヨー りんぴ

A natural question is to ask for the conditions on β , λ that makes $y = 0$ stable

For a DBM with $K = 2, 3, 4$ layers one can prove that

The region of parameters (β, λ) such that the annealed solution $y = 0$ is stable coincide with the interior of the region A_K .

KED KAP KED KED E VOOR

• Need of interdisciplinary collaborations

• Need of interdisciplinary educational programs

• Need of an efficient communication to the public

イロト イ母 トイヨ トイヨト

 OQ

÷